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Abstract. We investigate the absorption and dispersion properties of a two-level atom driven by a poly-
chromatic field. The driving field is composed of a strong resonant (carrier) frequency component and a
large number of symmetrically detuned sideband fields (modulators). A rapid increase in the absorption
at the central frequency and the collapse of the response of the system from multiple frequencies to a
single frequency are predicted to occur when the Rabi frequency of the modulating fields is equal to the
Rabi frequency of the carrier field. These are manifestations of the undressing or a disentanglement of the
atomic and driving field states, that leads to a collapse of the atom to its ground state. Our calculation
permits consideration of the question of the undressing of the driven atom by a multiple-modulated field
and the predicted spectra offer a method of observing undressing. Moreover, we find that the absorption
and dispersion spectra split into multiplets whose structures depend on the Rabi frequency of the mod-
ulating fields. The spectral features can jump between different resonance frequencies by changing the
Rabi frequency of the modulating fields or their initial phases, which can have potential applications as a
quantum frequency filter.

PACS. 32.50.+d Fluorescence, phosphorescence (including quenching) – 32.80.-t Photon interactions with
atoms – 32.80.Qk Coherent control of atomic interactions with photons – 42.50.Gy Effects of atomic
coherence on propagation, absorption, and amplification of light – 42.50.Ar Photon statistics and coherence
theory

1 Introduction

The study of coherent effects in resonant media has re-
cently attracted a great deal of interest, especially due
to the prediction [1] and experimental observation [2] of
a steep anomalous and normal dispersion accompanied
by electromagnetically induced transparency [3]. The dis-
persion of radiation by matter is certainly one of the
fundamental physical properties. The usual dispersion-
absorption relations tell us that at frequencies at which the
dispersion is large and steep, absorption by the medium
is also large. For example, in an undriven atom the dis-
persion is large near the transition frequency, but at this
frequency the absorption is very high as well, and there-
fore an incident probe field would be absorbed within a
distance of the order of the transition wavelength. It has
been shown that an application of a strong driving field
could change the absorptive and dispersive properties of
two-level [4] and multi-level atoms [5] such that a high
dispersion can be achieved accompanied by vanishing ab-
sorption.

a e-mail: ficek@physics.uq.edu.au

In the case of driven atoms the absorption is a balance
between stimulated absorption and emission, which causes
the cancellation of the absorptive features corresponding
to transitions between equally populated levels [6]. While
the main interest in the absorption and dispersion of op-
tical materials has been focused on the case of a weak
probing field [7], the driven two-level atom with an arbi-
trary strong probe intensity has also been investigated in
the context of a search for nonlinear effects in the atom-
field interaction [8]. The results showed that the strongly
probed system can response not only at harmonics, but
also at subharmonics of the Rabi frequency of the driv-
ing field [9]. The resonances correspond to multi-photon
absorption by the driven atom, and the physical origin of
these features is explained by the dressed-atom model [10].

Recently, we developed a theory of the fluorescence
spectrum of a two-level atom driven by a multiple mod-
ulated field [11]. We assumed that the modulated field is
composed of a strong resonant frequency component and
a large number of symmetrically detuned sideband fields
displaced from the central component by integer multiples
of a constant detuning. We found that two distinctly dif-
ferent types of the fluorescence spectra can be observed
depending on the Rabi frequency of the modulating fields
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and their initial phase relative to the phase of the strong
central component. For equal relative phases, the effective
Rabi frequency of the driving field reduces to zero result-
ing in the disappearance of the fluorescence spectrum. On
the other hand, for the opposite relative phases, the
spectrum exhibits a triplet structure with the sidebands
located at frequencies equal to the sum of the Rabi fre-
quencies of the field components. It should be noted that
a multiple modulated field could be realised experimen-
tally by applying a multi-mode symmetric mode-locked
laser [12], or by applying electro-optic modulator of a
single-mode laser [13].

It is the purpose of this paper to study the ab-
sorption and dispersion properties of a two-level atom
driven by a multiple modulated field. Comparison is made
with the absorption and dispersion spectra calculated for
a monochromatic driving field [4,6,7]. The fluorescence
spectra described above lead one to suspect that the
absorption and dispersion spectra arising from an atom
driven by a multiple modulated field will display interest-
ing features. Indeed, we find that the spectra differ qualita-
tively from those found for the monochromatic and bichro-
matic driving fields. In particular, we exploit the fact that
the absorptive and dispersive properties of a two-level
atom can be dramatically modified by controlling the am-
plitude and phase of the sideband components of a poly-
chromatic driving field. Moreover, we show that a multiple
modulation can lead to an amplification of the probe field
at frequencies that are independent of the Rabi frequency
of the driving field. The amplification features can jump
between different resonance frequencies by changing the
Rabi frequency of the modulating fields or their initial
phases, which could allow to filter signals of well defined
frequencies.

2 Absorption and dispersion of a probe beam

The system under investigation consists of a two-level
atom driven by a coherent multi-chromatic field and
damped by spontaneous emission into the remaining
vacuum modes of the three-dimensional electromagnetic
(EM) field. The atom has excited state |2〉, ground state
|1〉, and transition frequency ωa. The zero of energy for
the atom is taken to be midway between the ground and
excited states such that the ground state energy (in units
of ~ωa) equals to −1/2.

The driving field is taken as a polychromatic field com-
posed of a large number of discrete modes of the amplitude

E (t) =
1
2

p∑
n=−p

Enei(ωnt+ψn) + c.c.

=
1
2

ei(ω0t+ψ0)

p∑
n=−p

Enei(δnt+φn) + c.c., (1)

where En (t) and ωn are the amplitude and frequency of
the nth component, respectively, δn = ωn − ω0 is the de-
tuning between the nth sideband component (n 6= 0) and

the carrier (n = 0) component of the field, 2p + 1 = N
is the number of the field components, ψn is the phase
of the nth component and φn = ψn − ψ0 is the relative
initial (t = 0) phase between the carrier and the nth side-
band component. Further on, for simplicity, we will set
the phase of the carrier field ψ0 = 0, and will assume that
the frequency ω0 of the carrier is resonant with the atomic
transition frequency, i.e. the detuning ∆ = ωa−ω0 is zero.

In the interaction picture, the master equation for the
density operator of the system has the form [14]

∂

∂t
ρ (t) = − i

~

[
H̃, ρ (t)

]
− 1

2
Γ
(
S̃+S̃−ρ (t) + ρ (t) S̃+S̃− − 2S̃−ρ (t) S̃+

)
, (2)

where

S̃± (t) = ±iS±e∓iω0t (3)

are slowly varying parts of the atomic spin raising (S+ =
|2〉 〈1|) and lowering (S− = |1〉 〈2|) operators, Γ is the
spontaneous emission rate and H̃ is the interaction Hamil-
tonian of the polychromatic field with the atom, which
in the electric-dipole and rotating-wave approximations is
given by

H̃ = −1
2

i~

[
p∑

n=−p
Ωne−i(δnt+φn)S+ −H.c.

]
· (4)

Here, Ωn is the Rabi frequency of the nth component of
the driving field.

We proceed by writing down equations of motion for
the expectation values of the atomic operators derived
from the master equation (2). The equations can be writ-
ten in a compact matrix form as

∂

∂t
X (t) =M (t)X (t) + L, (5)

where X (t) is a column vector with the components
X1(t) = Tr[S−ρ(t)] = 〈S̃−(t)〉, X2(t) = Tr[S+ρ(t)] =
〈S̃+(t)〉, X3(t) = Tr[Szρ(t)] = 〈S̃z(t)〉, and S̃z(t) = Sz =
(|2〉 〈2| − |1〉 〈1|)/2 is the population inversion operator. In
equation (5),M (t) is a complex 3× 3 matrix

M (t) =

 − 1
2Γ 0 Ω (t)

0 − 1
2Γ Ω∗ (t)

− 1
2Ω
∗ (t) − 1

2Ω (t) −Γ

 , (6)

with

Ω (t) =
p∑

n=−p
Ωn exp[−i (δnt+ φn)], (7)

and L is an inhomogeneous term with components L1 =
L2 = 0 and L3 = −Γ/2.

The equation (5) are the first-order differential equa-
tions with time dependent coefficients. For a large num-
ber of the components of the driving field, the coefficients



Z. Ficek et al.: Absorption and dispersion by a multiple driven two-level atom 413

are quite complicated and in general involve N different
parameters δn. The analytical or numerical treatment of
such a problem becomes extremely difficult. However, the
problem simplifies when the frequencies of the field compo-
nents are equidistant and symmetrically distributed about
the carrier frequency ω0. In the following, we will explore
the special case of δn = nδ and Ω−n = Ωn. We will also
assume that φ−n = φn. In this special case the time de-
pendence of Ω (t) can be expressed in terms of a single
parameter δ as

Ω (t) = Ω0 + 2
p∑

n=1

Ωne−iφn cosnδt. (8)

It is seen from equation (8) that the sideband fields act
as a multiple modulator of the Rabi frequency Ω0 of the
carrier component. Depending on the initial phase φn, the
sideband fields can modulate the amplitude or the phase
of Ω0. For φn = 0 or π the sidebands act as a multiple
modulator of the amplitude

Ω (t) = Ω0

(
1±

p∑
n=1

an cosnδt

)
, (9)

where an = 2Ωn/Ω0 is the modulation amplitude and the
sign “ + ” corresponds to φn = 0, while “− ” corresponds
to φn = π.

We now suppose that the system is weakly perturbed
by a monochromatic probe field of a frequency ω, in whose
absorption and dispersion we are interested. The probe ab-
sorption and dispersion essentially explore the atom plus
driving field entangled states (dressed states) and espe-
cially their relative populations. Various components of
the spectra are associated with different transition fre-
quencies between these dressed states. In the course of pre-
vious work on absorption spectra in amplitude-modulated
fields only the cases of a small number of the modulating
fields, p = 1 and p = 2, have been studied [15]. Here, we
treat the opposite limit of a large number of the modu-
lating fields (p � 1). The special significance of this case
is that the absorption and dispersion spectra strongly de-
pend on the Rabi frequency and phase of the modulating
fields, and also an analytical treatment can be given that
clearly explains the predicted spectral features.

The linear susceptibility χ(ω) of the probe field at fre-
quency ω is given in terms of the Fourier transform of the
average value of the two-time commutator of the atomic
dipole operators as [6,16,17]

χ (ω) = Γ

(
1
T

∫ T

0

dt′
∫ t′

0

dt〈[S̃− (t) , S̃+ (t′)]〉eiν(t−t′)
)
,

(10)

where T is the integrating time of the detector, and ν =
ω − ω0.

Invoking the quantum regression theorem [18] to-
gether with the equations of motion (5), one may
obtain equations of motion for the two-time corre-
lation functions 〈[S̃− (t) , S̃+ (t′)]〉, 〈[S̃+ (t) , S̃+ (t′)]〉 and

〈[S̃z (t) , S̃+ (t′)]〉. The equations are formally the same as
equation (5), but with

X1 (t)→ χ1 (t, t′) = 〈[S̃− (t) , S̃+ (t′)]〉,
X2 (t)→ χ2 (t, t′) = 〈[S̃+ (t) , S̃+ (t′)]〉,
X3 (t)→ χ3 (t, t′) = 〈[Sz (t) , S̃+ (t′)]〉, (11)

and the inhomogeneous term L = 0.
To illustrate the effect of a multiple modulation on the

two-level atom, we solve equation (5) using the Floquet
method [19], in which the atomic dynamics are described
in terms of Fourier harmonics of the atomic variables. In
this approach, we make a harmonic decomposition of the
expectation values of the commutators

χk (t, t′) =
∞∑

l=−∞
χ

(l)
k (t, t′) eilδt, k = 1, 2, 3, (12)

where χ(l)
k (t, t′) are slowly varying two-time harmonic am-

plitudes.
By substituting equation (12) into equation (5) and

comparing coefficients of the same powers in lδ, we obtain
that the equations of motion for the harmonic amplitudes
take the form

∂

∂t
χ

(l)
1 = −

(
1
2
Γ + ilδ

)
χ

(l)
1 +

p∑
n=−p

Ω̃nχ
(l+n)
3 ,

∂

∂t
χ

(l)
2 = −

(
1
2
Γ + ilδ

)
χ

(l)
2 +

p∑
n=−p

Ω̃∗nχ
(l−n)
3 ,

∂

∂t
χ

(l)
3 = − (Γ + ilδ)χ(l)

3 −
1
2

p∑
n=−p

Ω̃∗nχ
(l−n)
1

−1
2

p∑
n=−p

Ω̃nχ
(l+n)
2 . (13)

Taking the Laplace transform of equation (13) over the
time variable τ = t−t′ and eliminating χ(l)

1 (z) and χ(l)
2 (z),

the set of equations (13) can be written in a form of
an inhomogeneous (2N − 1)-term recurrence relation for
χ

(l)
3 (z) as

(z + Γ + ilδ)χ(l)
3 (z) +

1
2

∑
n

∑
m

Ω̃∗nΩ̃m
Pl−n (z)

χ
(l−n+m)
3 (z)

+
1
2

∑
n

∑
m

Ω̃nΩ̃
∗
m

Pl+n (z)
χ

(l+n−m)
3 (z)

= gl (z) , (14)

where Pl (z) = z + (1/2)Γ + ilδ, z is a complex (Laplace
transform) parameter, and

gl (z) = χ
(l)
3 (t′, t′)− 1

2

∑
n

Ω̃∗n
Pl−n (z)

χ
(l−n)
1 (t′, t′)

− 1
2

∑
n

Ω̃n
Pl+n (z)

χ
(l+n)
2 (t′, t′) (15)
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is an inhomogeneous term given by the initial values
(t = t′) of the atomic correlation functions

χ
(l)
1 (t′, t′) = −2X(l)

3 (t′),

χ
(l)
2 (t′, t′) = 0,

χ
(l)
3 (t′, t′) = X

(l)
2 (t′)· (16)

In equation (16), X(l)
k (t′) are the stationary harmonic am-

plitudes of the expectation values of the atomic dipole op-
erators, which can be found from the following recurrence
relation

(Γ + ilδ)X(l)
3 +

1
2

∑
m,n

Ω̃mΩ̃
∗
n

Pl−n
X

(l−n+m)
3

+
1
2

∑
m,n

Ω̃∗mΩ̃n
Pl+n

X
(l+n−m)
3 = −1

2
Γδl,0, (17)

where Pl = (1/2)Γ + ilδ, Ω̃n = Ωnexp(−iφn), and δl,0 is
the Kronecker delta function.

The linear susceptibility (10) can be written as

χ (ω) = χ′ (ω) + iχ′′ (ω) , (18)

where the real (χ′) and imaginary (χ′′) parts of χ deter-
mine the absorption and dispersion spectra of the probe
field. According to equations (10, 11), the stationary probe
absorption and dispersion spectra are given, respectively,
by the real and imaginary parts of the zeroth-order har-
monic χ(0)

1 (z) as

χ′ (ω) = ΓReχ(0)
1 (z) |z=−iν , (19)

and

χ′′ (ω) = Γ Imχ(0)
1 (z) |z=−iν , (20)

where

χ
(0)
1 (z) =

1
P0 (z)

(
−2X(0)

3 (t′, t′) +
p∑

n=−p
Ω̃nχ

(n)
3 (z)

)
.

(21)

The expression (21) is our formal result for the absorption
and dispersion spectra of a two-level atom driven by a mul-
tiple amplitude-modulated field. The first term of equa-
tion (21) involves the stationary component of the popu-
lation inversion between the atomic levels, whereas the
second term involves the quantities χ

(n)
3 (z) which are

found from the recurrence relation (18) by using a trun-
cated basis of the harmonic amplitudes and a numeri-
cal continued fraction technique [19]. Thus, using the re-
sult (21), the weak probe field absorption and dispersion
spectra can be evaluated to any desired accuracy and for
an arbitrary number of modulating fields. The suscepti-
bility (21) is a function of the detuning δ, the Rabi fre-
quency Ωn and the phase φn. For fixed Ω0 and δ, one can
observe absorption and dispersion spectra as a function of

Fig. 1. Three-dimensional absorption spectra χ′ (ω) as a func-
tion of (ω − ω0)/Γ and Ω/Γ for Ω0 = 40Γ, δ = 10Γ, p = 25,
and φn = 0.

ν and the Rabi frequency Ωn6=0 = Ω of the modulating
fields. In the following, we give illustrative figures of the
dependence of the absorption and dispersion spectra on Ω
and φn.

In Figure 1, we present the three-dimensional absorp-
tion spectrum χ′ (ω) for Ω0 = 40Γ, δ = 10Γ, p = 25, and
φn = 0. The graph shows how the absorption spectrum is
modified when the Rabi frequency of the modulating fields
varies. In the absence of the modulating fields, Ω = 0,
and then the spectrum exhibits the familiar Mollow ab-
sorption spectrum [6] with very small dispersive structures
at ν = ±Ω0 and vanishing absorption (transparency) at
ν = 0. When the Rabi frequency of the modulating fields
increases, an absorption peak emerges at ν = 0. As Ω
increases further, the amplitude of the peak increases in
an oscillatory manner and the small dispersive structures
move towards the central peak. As it is shown in Section 3,
the oscillations of the amplitude of the central peak result
from the oscillations of the population inversion between
the atomic bare states. For Ω < Ω0 the amplitude of the
oscillations is small and slowly increases with Ω. When
Ω ' Ω0, the dominant feature of the spectrum is a large
absorptive peak at the central frequency. Thus, the mod-
ulating field turns the atom into its ground state. The
continuous move of the small sideband features towards
the central component and the appearance of a strong ab-
sorption peak for Ω ' Ω0 clearly demonstrates that atom
collapses into its ground state when Ω = Ω0. That is, for
Ω = Ω0 the atomic and driving field states completely
disentangles. In other words, the effect of the modulating
fields is to “undress” the atom.

The manner in which the absorption spectrum evolves
with Ω is different for φn = π. This is shown in Figure 2,
where we plot the spectrum for the same parameters as in
Figure 1, but Ω → −Ω. Again, the sideband features re-
main dispersive independent of Ω. As Ω increases the dis-
persive features jump towards larger resonance frequencies
and their amplitudes attain maxima when Ω = nδ, where
n = 0, 1, 2, . . . The central peak, suppressed at Ω = 0,
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Fig. 2. Same as in Figure 1, but with φn = π.

starts to build up rapidly as Ω increases and attains a
prompt maximum at Ω = δ/2. The amplitude of the cen-
tral peak oscillates with Ω and, in contrast to the case
of φn = 0, decreases with increasing Ω. In spite of the
increase of the number of resonance frequencies, the spec-
trum also shows an interesting stabilisation of the number
of frequencies at which the system responses to the probe
field. When the Rabi frequency of the modulating fields in-
creases the system, initially responding at two frequencies,
begins responding at a large number of frequencies located
at multiples of ±δ. In this case, there is a large number
of frequencies at which the system is transparent for the
probe field. Thus, this case illustrates an interesting ex-
ample for the occurrence of multiple electromagnetically
induced transparency. In addition, there are broad regions
in which χ′ (ω) is negative, corresponding to probe-field
amplification. When Ω = δ, the multi-frequency response
reduces to only two frequencies, which is similar to that
observed for Ω = 0, but of larger frequency separations.
When Ω is increased to 3δ/2, the response of the sys-
tem again breaks up into multiple frequencies. Thus, the
multi-field dressing, seen for Ω = (n+ 1/2)δ, reduces to a
monochromatic (single field) dressing when Ω = nδ. This
behavior may make this system useful as a quantum fre-
quency filter.

The stabilisation of the response of the system to a
probe field is better seen in the dispersion spectrum. In
Figure 3, we show the dispersion spectrum χ′′ (ω) for the
same parameters as in Figure 2. The spectrum exhibits a
large positive dispersion at the lower-frequency sidebands
and a negative dispersion at the higher-frequency side-
bands. The peaks of χ′′ (ω) occur at exactly the frequen-
cies at which χ′ (ω) vanishes. Moreover, for Ω = (n+1/2)δ
there is a steep normal dispersion at ν = 0. The disper-
sion at ν = 0 oscillates with Ω and its amplitude decreases
with increasing Ω and becomes less steep.

The degree of the oscillatory behavior of the central
absorptive and dispersive peaks and the process of un-
dressing the atom are sensitive function of the modulation
frequency δ. This is shown in Figure 4, where we plot the

Fig. 3. Three-dimensional dispersive spectra χ′′ (ω) as a func-
tion of (ω − ω0)/Γ and Ω/Γ for Ω0 = 40Γ, δ = 10Γ, p = 25,
and φn = π.

Fig. 4. Three-dimensional absorption spectra χ′ (ω) as a func-
tion of (ω − ω0)/Γ and Ω/Γ for Ω0 = 40Γ, δ = 40Γ, p = 25,
and φn = 0.

absorption spectrum for the same parameters as in Fig-
ure 1, but δ = Ω0 = 40Γ . Instead of jumping between dif-
ferent resonance frequencies, the sideband features located
at ±δ do not move towards the central component when Ω
increases. The positions of the features remain constant,
but their amplitudes vanish when Ω = Ω0. Moreover, the
central peak builds up without oscillations and, similar to
Figure 1, attains maximum value at Ω = Ω0.

Further interesting behavior is illustrated in Figure 5,
where we plot the absorption spectrum for the same pa-
rameters as in Figure 4, but with Ω → −Ω. Here, the
dispersive features at ±Ω0 decay exponentially with an
increasing Ω and simultaneously dispersive features build
up at ±2Ω0. In addition, at the point Ω = Ω0/2, where
both the sidebands have the same amplitudes, a large cen-
tral (absorptive) peak appears in the spectrum. Thus, the
transfer of the response of the system from the sideband
frequencies ±Ω0 to frequencies ±2Ω0 appears through a
stabilisation of the atom in its ground state.
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Fig. 5. Same as in Figure 4, but with φn = π.

Fig. 6. Three-dimensional dispersive spectra χ′′ (ω) as a func-
tion of (ω − ω0)/Γ and Ω/Γ for Ω0 = 40Γ, δ = 40Γ, p = 25,
and φn = π.

Figure 6 exhibits the effect of the multiple-modulation
on the dispersion spectrum for the same parameters as
in Figure 5. When the Rabi frequency of the modulating
field increases the positive (negative) dispersion switches
from the frequency Ω0(−Ω0) to 2Ω0(−2Ω0). The switch-
ing process is accompanied by a steep normal dispersion
appearing at the central frequency for Ω = Ω0/2. How-
ever, the steep dispersion is accompanied by an absorption
(see Fig. 5).

3 Analytical results

The physics associated with the unusual response of the
multiple driven two-level atom to a probe field can be un-
derstood more intuitively by approximate analytical solu-
tions. Proceeding in a manner identical to that we calcu-
lated the fluorescence spectrum of a two-level atom driven
by a multiple modulated field [11], we introduce linear

combinations of the two-time components χi (t, t′) as

V (t, t′) =
1
2

(χ1 (t, t′)− χ2 (t, t′)) ,

U (t, t′) = χ3 (t, t′) +
i
2

(χ1 (t, t′) + χ2 (t, t′)) ,

W (t, t′) = χ3 (t, t′)− i
2

(χ1 (t, t′) + χ2 (t, t′)) , (22)

where χk (t, t′) are defined in equation (11).
Following the method of reference [11], we find that

the time dependence of V (t, t′) has the simple exponential
form

V (t, t′) = V (t′, t′) e−
1
2Γ(t−t′), (23)

where V (t′, t′) is the initial value of V (t, t′).
Under the secular approximation, the time dependence

of the remaining components U (t, t′) and W (t, t′), is
given by

U (t, t′) = U (t′, t′)

×e−( 3
4Γ−iΩ0)(t−t′)−i

P
n An(sinnδt′−sinnδt),

W (t, t′) = W (t′, t′)

×e−( 3
4Γ+iΩ0)(t−t′)+i

P
n An(sinnδt′−sinnδt),

(24)

where An = 2Ωn/ (nδ).
The solutions (23, 24) allow to reproduce the different

components found in the absorption and dispersion spec-
tra by the numerical analysis and to derive approximate
expressions for their intensities and widths. By decompos-
ing the sine oscillating terms, appearing in equation (24),
into Fourier components [21]

e±iAn sinnδt′ =
∑
qn

Jqn (±An) eiqnnδt
′
,

e±iAn sinnδt =
∑
rn

Jrn (±An) eirnnδt, (25)

where Jqn (An) is the qnth order Bessel function, the so-
lutions (24) become

U (t, t′)=U (t′, t′)
∑
q1,r1

. . .
∑
qp,rp

Jq1 (A1)Jr1 (−A1)Jq2 (A2)

×Jr2 (−A2) . . . Jqp (Ap)Jrp (−Ap)

×e−[ 3
4Γ−i(Ω0+

P
n nqnδ)](t−t′)e−i

P
n(qn+rn)nδt,

W (t, t′)=W (t′, t′)
∑
q1,r1

. . .
∑
qp,rp

Jq1 (A1)Jr1 (−A1)Jq2 (A2)

×Jr2 (−A2) . . . Jqp (Ap)Jrp (−Ap)

×e−[ 3
4Γ+i(Ω0+

P
n nqnδ)](t−t′)e+i

P
n(qn+rn)nδt.

(26)

Equation (26) shows that an nth pair of the sideband
fields is equivalent to a resonant field with an amplitude of
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J0(An) plus nonresonant fields at the detuned frequencies
nqnδ and amplitudes Jqn(An).

According to the definition of the susceptibility (10),
we have to evaluate the two-time correlation function
of the atomic dipole operators. With the help of equa-
tion (22), one finds that the two-time correlation func-
tion can be expressed by the linear combinations V, U
and W as

χ1 (t, t′) = V (t, t′)− i
2

(U (t, t′)−W (t, t′)) . (27)

Hence, in the secular approximation, the absorption and
dispersion spectra are given by

χ′ (ω) /Γ = −1
2

X
(0)
3 Γ(

Γ
2

)2
+ ν2

+
1
2
X̃

(0)
2

∑
q1,r1

. . .
∑
qp,rp

×
{
Jq1 (A1)Jr1 (−A1) . . . Jqp (Ap)Jrp (−Ap) (ν +D)

9
16Γ

2 + (ν +D)2

× δq1+r1+...+pqp+prp,0

+
Jq1 (A1)Jr1 (−A1) . . . Jqp (Ap)Jrp (−Ap) (ν −D)

9
16Γ

2 + (ν −D)2

×δq1+r1+...+pqp+prp,0

}
, (28)

and

χ′′ (ω) /Γ = − X
(0)
3 ν(

Γ
2

)2
+ ν2

+
3
4
X̃

(0)
2

∑
q1,r1

. . .
∑
qp,rp

×
{
Jq1 (A1)Jr1 (−A1) . . . Jqp (Ap)Jrp (−Ap)Γ

9
16Γ

2 + (ν +D)2

×δq1+r1+...+pqp+prp,0

+
Jq1 (A1)Jr1 (−A1) . . . Jqp (Ap) Jrp (−Ap)Γ

9
16Γ

2 + (ν −D)2

×δq1+r1+...+pqp+prp,0

}
, (29)

where D = Ω0 +
∑
n nqnδ, and X̃

(0)
2 = ImX(0)

2 .
It is seen from equations (28, 29) that the sideband

features of the spectra are located at multiplets of δ and
their positions are independent of the number of modu-
lating fields and their Rabi frequencies. However, the am-
plitudes of the sideband features depend on the number
of modulating fields and their Rabi frequencies. Moreover,
the dependence of the amplitudes on the Kronecker delta
function indicates that only these terms contribute to the
spectrum for which

q1 + r1 + 2q2 + 2r2 + . . .+ pqp + prp = 0. (30)

There is an infinite number of the parameters qn and rn
satisfying the condition (30). The spectra (28, 29) have

complicated structures and it is difficult to predict the be-
havior of the spectra on the number of modulating fields.
However, in our numerical calculations of Section 2, we as-
sumed that the driving field is composed of a large number
of frequency components (p� 1). In this case, we can ap-
proximate the sums appearing in equation (24) by [21,22]∑

n

An (sinnδt′ − sinnδt) ≈ Ωt−Ωt′. (31)

Hence, in the limit of p� 1, the absorption and dispersion
spectra can be written as

χ′ (ω) =
1
2
Γ

{
−X(0)

3

Γ
1
4Γ

2 + ν2

+X̃(0)
2

(ν +Ω0 −Ω)
9
16Γ

2 + (ν +Ω0 −Ω)2

+X̃(0)
2

(ν −Ω0 +Ω)
9
16Γ

2 + (ν −Ω0 +Ω)2

}
, (32)

and

χ′′ (ω) =
1
2
Γ

{
− 2X(0)

3

ν
1
4Γ

2 + ν2

+
3
4
X̃

(0)
2

Γ
9
16Γ

2 + (ν +Ω0 −Ω)2

+
3
4
X̃

(0)
2

Γ
9
16Γ

2 + (ν −Ω0 +Ω)2

}
· (33)

It is clear from equations (32, 33) that the “effective” Rabi
frequency of a multiple modulated field is equal to the
difference Ω0 − Ω and vanishes for Ω = Ω0. As a re-
sult, the Rabi sidebands of the spectrum move towards
the central component as Ω increases and disappear for
Ω = Ω0. When we change the phase of the modulating
fields, Ω → −Ω, and then the effective Rabi frequency
changes to Ω0 +Ω. In this case, the sidebands move away
from the central component as Ω increases.

It is seen from equation (32) that the magnitude of the
central component of the absorption spectrum depends on
the stationary component of the inversion X

(0)
3 , whereas

the sideband features depend on the imaginary part of
the dipole moment X(0)

2 . We have checked numerically
that X̃(0)

2 is very small independent of Ω. On the other
hand, the inversion can be reduced at some Ω and may
even reach the maximum negative value X

(0)
3 = −1/2.

This is shown in Figure 7, where we plot the popula-
tion inversion X

(0)
3 as a function of Ω for the same pa-

rameters as in Figure 1. Clearly, the inversion oscillates
with Ω and at Ω = Ω0, X(0)

3 ≈ −1/2 showing that at
Ω = Ω0 the atom collapses into its ground state. This
fact clearly explains the appearance of a large absorptive
peak in the absorption spectrum and the disappearance
of the Rabi sidebands. In Figure 8, we plot the popu-
lation inversion for the same parameters as in Figure 4.
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Fig. 7. The steady-state population inversion X
(0)
3 as a func-

tion of Ω for Ω0 = 40Γ, δ = 10Γ, p = 25 and φn = 0.
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Fig. 8. Same as in Figure 7, but with δ = 40Γ .

In this case the population inversion monotonically evolves
towards X(0)

3 = −1/2, that clearly explains the nonoscil-
latory increase of the absorption at the central frequency,
seen in Figure 4.

4 Summary

We have presented a detailed analysis of the probe absorp-
tion and dispersion spectra of a two-level atom driven by
a multiple-modulated field. We have calculated the spec-
trum numerically using a Floquet approach and have ex-
plained the spectral features calculating analytically the
spectrum in terms of the Bessel functions. We have shown
that in the limit of a large frequency components of the
modulating field the spectral features are very sensitive
to the Rabi frequency and initial phase of the modulat-
ing field. For the initial phases equal to zero, the dispersive
features located at the sideband frequencies move towards
the central component as the Rabi frequency of the mod-
ulating field increases, and an absorption peak emerges

at the central frequency whose the amplitude increases in
an oscillatory manner. The continuous move of the side-
band features towards the central component and the ap-
pearance of a strong absorption peak at the central fre-
quency clearly demonstrate that the multiple-modulated
field returns the atom to its ground state. The absorp-
tion and dispersion spectra reflect the dressing properties
of a strong driving field, or equivalently the entanglement
of atomic and driving field states. Hence, the predicted
spectra offer a method of observing undressing and disen-
tanglement by a multiple-modulated field. Moreover, we
have shown an interesting effect of stabilisation of the fre-
quencies at which the driven two-level atom responses to
the probe field, that could make this system useful as a
quantum frequency filter.
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